FLRPC: Proton Driver

Bob Kephart March 24, 2004

Outline

- FLRPC: Proton Driver Working Group
- Proton Driver Design Studies
 - 8-GeV synchrotron
 - 8-GeV Superconducting Linac ← bulk of the talk
 - MI upgrades
- FLRPC: PD recommendations
- **Conclusions**

Fermilah

Studies of the FNAL Proton Source

- Several studies have had the goal of understanding the limitations of the existing source and suggesting upgrades
- Proton Driver Design Study I:

16 GeV Synchrotron (TM 2136)

Dec 2000

• Proton Driver Design Study II (draft TM 2169):

✓ 8 GeV Synchrotron

May 2002

✓ 2 MW upgrade to Main Injector

May 2002

✓ 8 GeV Superconducting Linac:

Feb 2004

• Proton Team Report (D Finley):

Oct 2003

- **Report:** http://www.fnal.gov/directorate/program_planning/studies/ProtonReport.pdf
- Limitations of existing source, upgrades for a few 10's of \$ M.
- "On the longer term the proton demands of the neutrino program will exceed what reasonable upgrades of the present Booster and Linac can accommodate →FNAL needs a plan to replace its aging LINAC & Booster with a new more intense proton source (AKA a Proton Driver)

Fermilab:Long Range Planning

In April of 2003 the Fermilab Director formed a committee to provide advice on the long range scientific program of the laboratory. FLRP Membership & Charge:

http://www.fnal.gov/directorate/Longrange/Long_rang_planning.html

- **Excerpt from the charge to the LRP committee:**
 - I would like the Long-range Planning Committee to develop in detail a few realistically achievable options for the Fermilab program in the next decade under each possible outcome for the linear collider."
- It was clear from the start that a new intense proton source to serve long baseline neutrino experiments was one such option...

Fermilah

Technical Division

FLRP:PD Working group

PD Subcommittee:

Bob Kephart, chair

Steve Geer

Chris Hill

Peter Meyers

Sergei Nagaitsev

Technical Advisors

Dave Finley

John Marriner

Shekar Mishra


Victor Yarba

Proponents

Weiren Chou

Bill Foster

Fermilab Long Range Planning Committee Working Groups

Physics Working Group	Neutrinos Working Group
Convenor: Chris Hill	Convenor: Gary Feldman
B	
<u>Documents</u>	<u>Documents</u>
Linear Collider Working Group	Large Hadron Collider
Convenor: Steve Holmes	Working Group
	Convenor: John Womersley
B	
<u>Documents</u>	<u>Documents</u>
Proton Driver Working Group	Accelerator R&D Working Group
Convenor: Bob Kephart	Convenor: Steve Geer
<u>Documents</u>	<u>Documents</u>
Particle Astrophysics	Non-(Particle Physics)
Working Group	Working Group
Convenor: Josh Frieman	Convenor: Joel Butler
Documents (when available)	Documents
Resources Working Group	International Lab Issues
Convenor: Hugh Montgomery	Working Group
	Convenor:
Documents (when available)	Documents (when available)

Past BD Head (proton economics)

Past BD Head

Past deputy head MI project

SCRF R&D (started TD RF group)

Synchrotron based Proton Driver SCRF Linac based Proton Driver

DOE Program Review: FLRP:Proton Driver

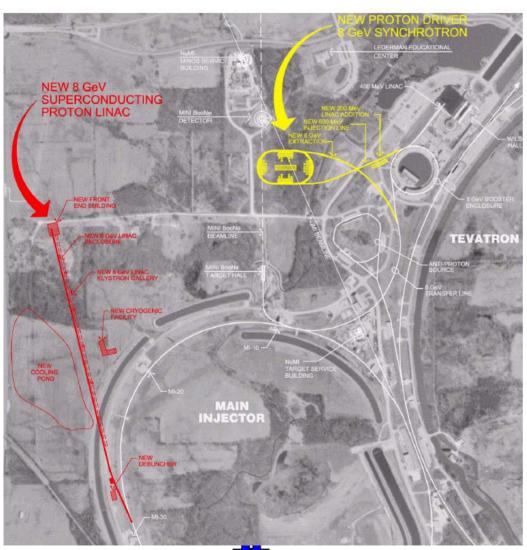
March 24, 2004

FLRP:PD Working group

- Had a series of 14 meetings
 - Well attended by Expert Participants
 - 27 additional people made presentations or important contributions to the meetings
 - 3 joint meetings with other LRP sub committees
- To obtain input from the community an open session took place on Oct 9, 2003
- "FLRP Retreat" Jan 9-10
 - "Draft Proton Driver Recommendations"
- Final Report and recommendations in Mar 2004
- PD meetings has now evolved into a regular Proton Driver R&D/Design meeting
 - More people joining the effort

Proton Driver Design Studies

8 GeV Synchrotron (TM 2169)


- Basic plan is to replace the existing Booster with a new large aperture 8 GeV Booster (also cycling at 15 Hz)
- Takes full advantage of the large aperture of the Main Injector
- Goal= 5 times # protons/cycle in the MI (3 x 10^{13} → 1.5 x 10^{14})
- Reduces the 120 GeV MI cycle time 20% from 1.87 sec to 1.53 sec
- The plan also includes improvements to the existing linac (new RFQ) and 10 MeV tank) and increasing the linac energy $(400 \rightarrow 600 \text{ MeV})$
- The increased number of protons and shorter cycle time requires substantial upgrades to the Main Injector RF system
- **Net result = increase the Main Injector beam power at** 120 GeV by a factor of 6 (from 0.3 MW to 1.9 MW)

Fermilah

FLRP:Proton Driver

PD: 8 GeV Synchrotron

- Sited West of the existing booster
- Twice the shielding of the current booster
- Large aperture magnets
- Collimators
 contain losses to
 avoid activation of
 equipment

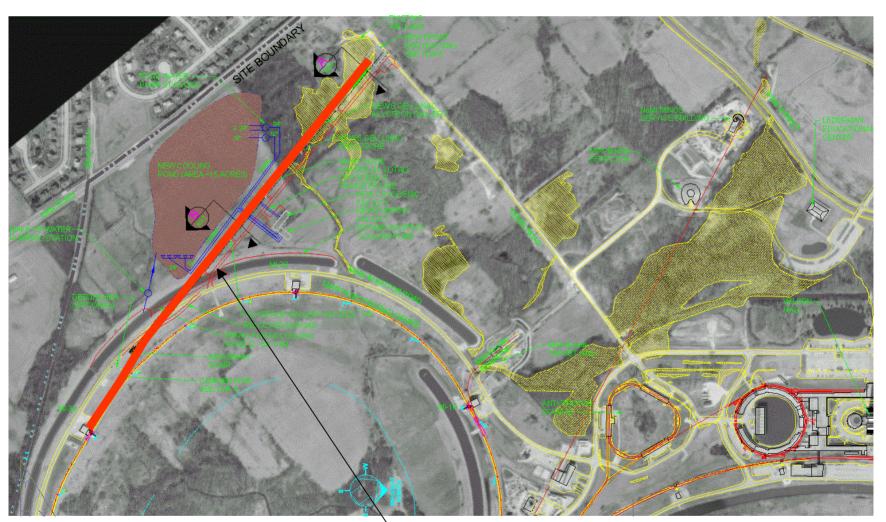
PD: 8 GeV Synchrotron

Synchrotron technology well understood

- May be cheaper than an 8 GeV linac
- We have more experience with this kind of machine

• **But...**

- Doesn't replace entire linac → 200 MHz PA's would still be a vulnerability, aging linac equipment still an issue
- Cycle time is still 15 Hz → it would still take 5/15 of a sec to fill MI with 6 booster batches → limits upgrades to the MI cycle time (Beam power is proportional to # p/cycle x cycles/sec)
- Large aperture rapid cycling magnets → development
- Significant interruption of operations to upgrade linac and break into various enclosures (vs Run II)
- Losses, instabilities, etc... vs ultimate performance ?



PD: 8 GeV SC Linac

- Basic concept, design, (& slides) are due to Bill Foster at FNAL
- Observation: \$/ GeV for SCRF has fallen dramatically → can consider a solution in which H- beam is accelerated to 8 GeV in a SC linac and injected directly into the Main Injector
- Why an SCRF Linac looks attractive:
 - Many components exist (few parts to design vs new booster synchrotron)
 - Copy SNS, RIA, & AccSys Linac up to 1.2 GeV
 - Use "TESLA" Cryo modules from $1.2 \rightarrow 8 \text{ GeV}$
 - Probably simpler to operate vs two machines (ie linac + booster)
 - Produces very small emittances vs a synchrotron
 - Delivers high beam powers simultaneously at 8 & 120 GeV
- Injection into MI is done with 90 turns of small transverse emittance beam (2 π mm-mrad, 95% normalized) which is "phase space painted" into MI (40 π) aperture in 1 ms \rightarrow MI "fill time" that is negligible vs MI ramp times (more later)

8 GeV Linac Siting for Design Study

•Sited tangent to the Main Injector

Other Possible SCRF Linac Missions

Principle Mission: Proton superbeams for Neutrinos

8 GeV or 120 GeV from MI (NUMI/Off-axis = NOvA)

Also:

 Protons for future 120 GeV fixed target experiments and continued antiproton production

Other possibilities:

- Protons:
 - Could Drive a Future Neutrino Factory
 - Could Drive a Spallation Neutron source
 - Could serve as a low emittance injector to a future VLHC
- Accelerate electrons ?
 - Could drive an x-ray FEL
 - Could be useful for LC beam or technology studies

Technological Synergies

- Lots of labs use or plan use of SCRF
- This provides many opportunities for collaboration and shared infrastructure/development costs
- Other Accelerators:
 - Existing: ATLAS (ANL), CBEAF, FNPL, TTF-I (DESY)
 - Construction: SNS (ORNL), DESY FEL
 - Proposed:
 - Cold Technology Linear Collider (TESLA),
 - RIA (ANL)
 - Light sources: LUX (LBNL), Cornell light source, PERL (BNL), MIT (Bates)
 - Electron cooling in RHIC (BNL), eRHIC (BNL)
 - BNL proton superbeam proposes 1.2 Gev SCRF Linac
 - SC linac is being discussed as part of the LHC upgrade
 - Medical isotope production, etc

A Draft Design Study exists

SCRF Proton Driver - working Draft Writeup v42.doc Created on 11/15/2003 3:03 PM

*** DRAFT *** 8 GeV Superconducting Injector Linac Design Study

1	1 INTRODUCTION	5
2	2 MOTIVATION FOR THE 8 GeV LINAC	7
	2.1 Multi-Mission Linac	
	2.2 Main Injector Operations with the 8 GeV Linac	8
	2.3 Relevance to Future Accelerator Projects	9
	2.4 Superconducting RF Technology	11
3	3 DESIGN OVERVIEW	13
-	3.1 Front-End Warm Linac (0-87 MeV) Overview	13
	 Superconducting RF (SCRF) Linac (87 MeV – 8 GeV) 	Overview14
	3.3 RF Power Systems - Overview	15
	3.4 Civil Construction Overview	16
	3.5 Site Selection	18
	3.6 One-Tunnel vs. Two-Tunnel Machine Layout	19
	3.7 Underground Klystron Gallery	20
	3.8 Tunnel Depth and Shielding.	20
4	4 CHOICE OF PRIMARY PARAMETERS	21
	4.1 Beam Energy	
	4.2 Beam Charge per Pulse	21
	4.3 Beam Current and Pulse Width	21
	4.4 Linac Pulse Repetition Rate (Average Beam Power)	22
	4.5 Different Particle Types in the 8 GeV Linac	23
5	5 ACCELERATOR PHYSICS	24
	5.1 Baseline Lattice and Cavity Layout	24
	5.2 Transverse Focusing.	
	5.3 Longitudinal Focusing and Frequency Jumps	26
	5.4 Linac Aperture	
	5.5 H- Stripping from Magnetic Fields and Energy Upgrade	
	5.6 Energy Stability and Cavity Resonance Control	
	5.7 Multiple Cavities per Klystron	
	5.8 Debuncher Cavity (Optional)	30
6	6 RUNNING ELECTRONS AND PROTONS IN THE SAM	E LINAC31
	6.1 Efficiency for accelerating e+- with cavities designed for	or lower Beta31
	6.2 Cavity Phase Shifts Between e- and P with Many Cavit	ies per Klystron32
	6.3 Sharing Transverse Focusing between Electrons & Prot	ons33
7	7 FRONT-END LINAC	34
	7.1 Technological Options for the Front-End Linac	
	7.2 Front-End Accelerator Physics and Tank Design	

Web Link:

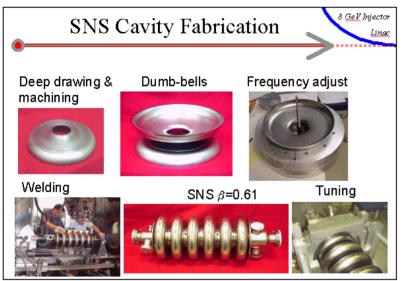
http://tdserver1.fnal.gov/project/8GeVLinac/DesignStudy/ 131 page document

- **Plan: Next Few Weeks:**
 - Merge with PD II Design Study
- **Technically it looks to be feasible**
- Principle issue is the cost
 - SNS was very expensive but there are reasons that this was so
 - TESLA appears to be very cheap / Gev
 - Need to do a careful Technical Design Report including optimization and costs
- That's the plan (more later)

8 GeV Linac Baseline

Design Study (130 pages): http://tdserver1.fnal.gov/project/8gevlinac

- Warm Copper DTL
- 805 MHz SNS & RIA Cavities to 1.3 GeV
- Modified TESLA (1207.5 MHz) to 8 GeV
- 48 "TTF-style" Cryomodules
- 384 Cavities (assuming TESLA-500 Gradients)


New Technology:

Extend TESLA RF Fan-Out to Proton/H- Linac

• 41 Klystrons in baseline design

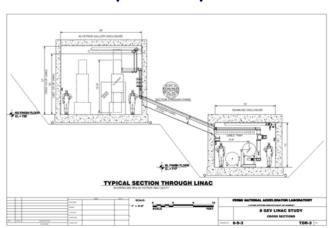
Most other TECHNICAL SUBSYSTEM DESIGNS *EXIST* and have been shown to *WORK*

SNS Cavites

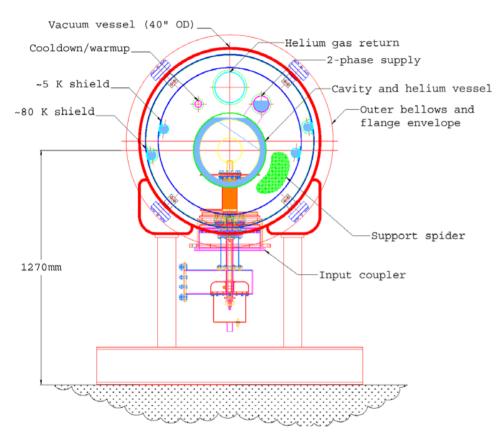
FNAL/TTF Modulators

8 GeV Linac Cryomodules - 4 Types

Beta= 0.47 (RIA)
87-175 MeV
2 Cryomodules
16 Cavities (RIA)


1175-400 MeV
3 Cryomodules
24 Cavities

Beta= 0.81 (SNS)
17 Cryomodules
25 Cavities

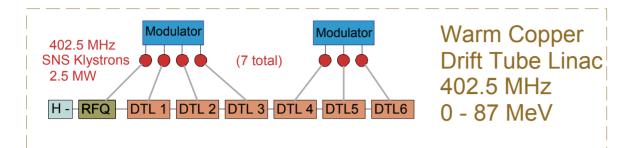

Beta= 1.00 ("TESLA")
18-8 GeV
36 Cryomodules
288 Cavities

"TTF Style" Cryomodules

Civil Const. Based on FMI

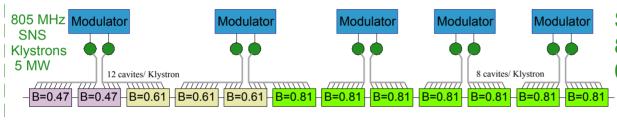
TESLA-Style Cryomodules for 8 GeV

Design conceptually similar to TESLA

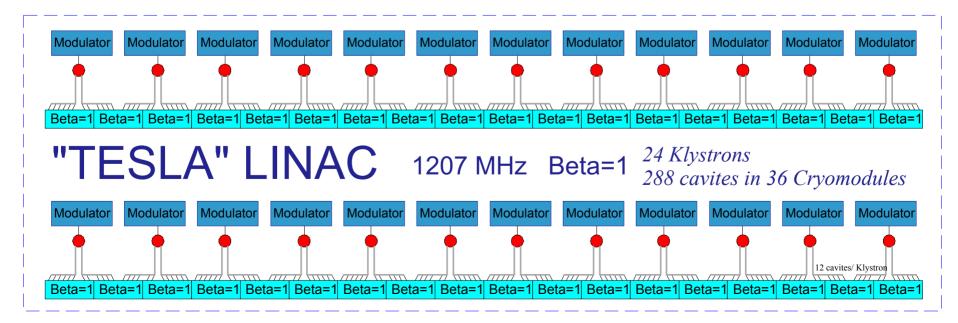

- No large cold gas return pipe
- − Cryostat diameter ~ LHC

RF Couplers are KEK / SNS design, conductively cooled for 10 Hz operation Cold string length ~ 300m vs every module in SNS

=> cheaper (more like TESLA)



8 GeV Linac Baseline 2 MW


8 GeV 2 MW LINAC

- 41 Klystrons (3 types)
- 31 Modulators 20 MW ea.
- 7 Warm Linac Loads
- 48 Cryomodules
- 384 Superconducting Cavities

Superconducting "SNS" Linac 805 MHz 0.087 - 1.2 GeV

10 Klystrons 96 cavites in 12 Cryomodules

8 GeV Linac Parameters

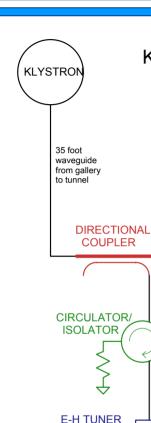
8 GeV LINAC

Energy	GeV	8		
Particle Type	H- Ions, Pre	H- Ions, Pretons, or Electrons		
Rep. Rate	Hz	10		
Active Length	m	671		
Beam Current	mA	25		
Pulse Length	msec	1		
Beam Intensity	P / pulse	1.5E+14	(can be H-, P, or e-)	
	P/hour	5.4E+18		
Linac Beam Power	MW avg.	2		
	MW peak	200		

MAIN INJECTOR WITH 8 GeV LINAC

MI Beam Energy	GeV	120	
MI Beam Power	MW	2.0	
MI Cycle Time	sec	1.5	filling time = 1msec
MI Protons/cycle		1.5E+14	5x design
MI Protons/hr	P / hr	3.6E+17	-
H-minus Injection	turns	90	SNS = 1060 turns
MI Beam Current	mA	2250	

Fermilab Technical Division



RF System for $1.2 \rightarrow 8$ GeV Linac

- Assumes TESLA-style RF distribution works
 - One TESLA multi-beam Klystron per ~12 Cavities
- Requires a "fast ferrite" E-H tuner to control the phase and amplitude to each cavity
 - The fundamental technology is proven in phased-array radar transmitters.
 - This R&D was started by SNS but dropped due to lack of time.
 - R&D is required to optimize the design for the Linac, funding in TD FY04 budget to start this effort
 - Also needed if Linac alternates between e and P.
- Modulators are identical to TESLA modulators

RF Fanout at Each Cavity

KLYSTRON

- RF Power Source
- Located in Gallery above tunnel
- Each Klystron Feeds 8-16 Cavities

DIRECTIONAL COUPLER

- Picks of a fixed amount of RF power at each station
- Passes remaining power downstream to other cavities

CIRCULATOR / ISOLATOR

- Passes RF power forward towards cavity
- Diverts reflected power to water cooled load

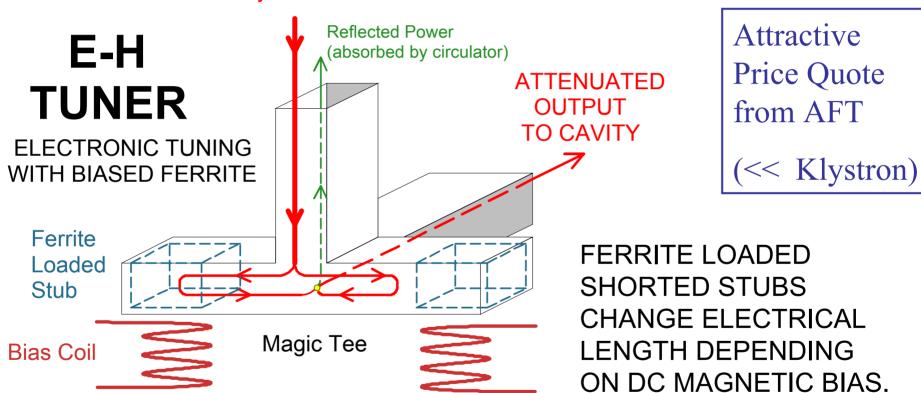
E-H TUNER

- Provides Phase and Amplitude Control for Cavities
- Biased Ferrite Provides Electronic Control

SUPERCONDUCTING RF CAVITY

- Couples RF Power to Beam

BEAM


Loaded Stub

CAVITY

ELECTRONICALLY ADJUSTABLE E-H TUNER

MICROWAVE INPUT POWER from Klystron and Circulator

TWO COILS PROVIDE INDEPENDENT
PHASE AND AMPLITUDE CONTROL OF CAVITIES

Cost Optimizations & Options

- Staging: Extend Klystron Fanout 12:1

 36:1
 - Drop beam current, extend pulse width
 - Drop rep. rate & avg. power 2 MW \rightarrow 0.5 MW at 8 GeV
 - Still delivers 2 MW from MI at 120 GeV
- Consider SCRF Front End (RIA Spokes)
- Assume TESLA 800 surface fields will work:
 - Baseline 5 GeV linac by assuming TESLA 500 gradients,
 - Deliver 8 GeV linac by achieving TESLA 800 gradients.

384 Cavities \rightarrow 240 cavities; Linac Length: 650m \rightarrow 400

Frequency Options

Standardize on SNS / RIA (805 MHz)

- Develop "modified TESLA" 1207.5 MHz cavities
- Develop Modified Multi-Beam Klystron
- Develop new spoke resonator family if SCRF

Standardize on TESLA (1300 MHz)

- Develop new family of "TESLA-Compatible" beta<1 cavities
- Already 3 vendors for main MBK
- Develop new spoke resonator family if SCRF

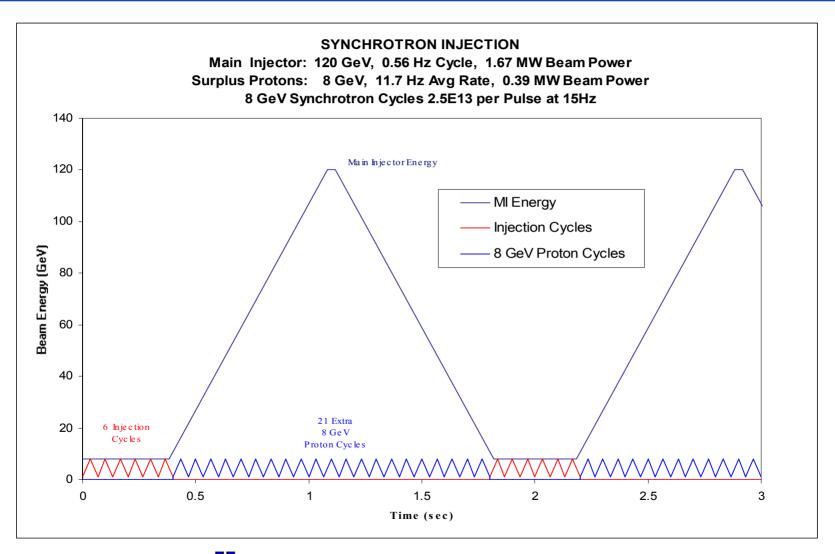
Fermilah

Main Injector with 8 GeV Linac

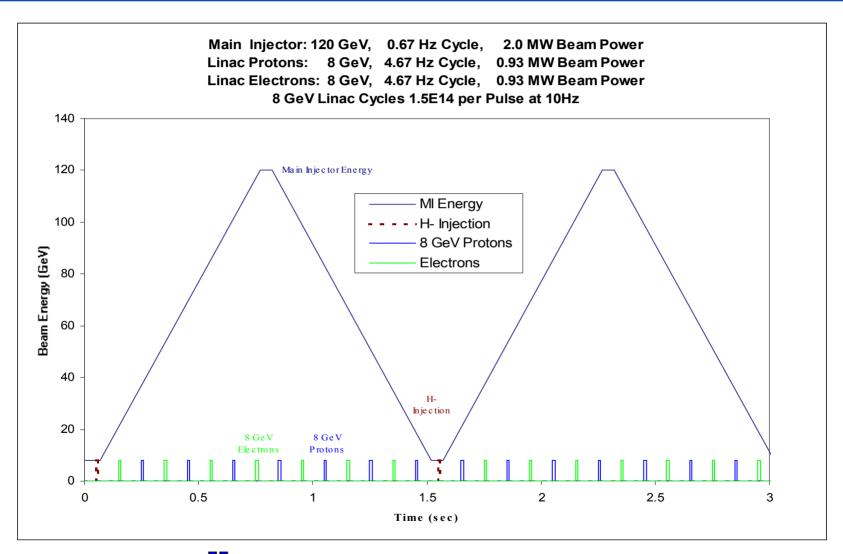
H⁻ stripping injection at 8 GeV

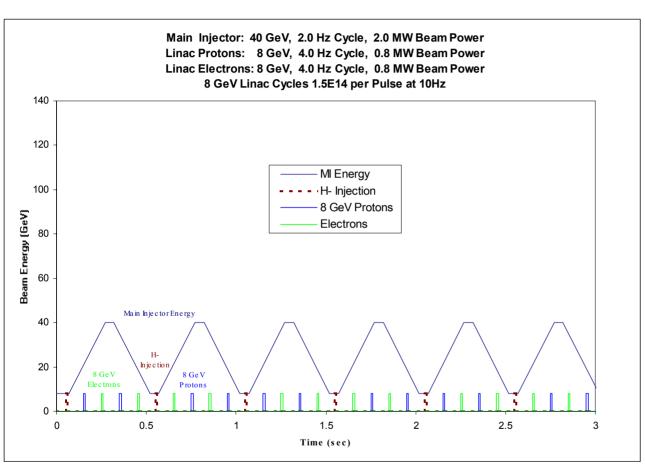
- 25 mA linac beam current
- − 90-turn Injection gives MI Beam Current ~2.3 A (SNS has 1060 turn injection at 1 GeV)
- preserve linac emittances $\sim 2\pi$ (or even $\sim 0.5\pi$ (95%) at low currents)
- phase space painting needed at high currents
- avoids space charge limitations present at lower energy

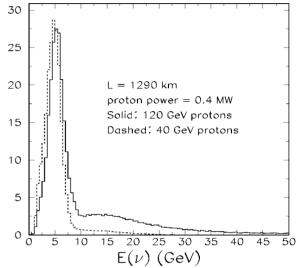
\rightarrow can put a LOT of beam in MI!


1.5 Second Cycle time to 120 GeV

- filling time 1 msec or less
- no delay for multiple Booster Batches
- no beam gaps for "Booster Batches" -- only Abort gap
- Even faster MI cycle times can be considered (x 2?)


120 GeV Main Injector Cycle with 8 GeV Synchrotron


120 GeV Main Injector Cycle with 8 GeV Linac, e- and P



Linac Allows Reduced MI Beam Energy without Compromising Beam Power

MI cycles to 40 GeV at 2Hz, retains 2 MW MI beam power

- # neutrinos ~ same
- Reduces tail at higher neutrino energies.
- May be a useful operating mode

Comparison of PD options

		Proton Driver		Proton Driver SCRF Linac
	Present Proton	synchrotron	Proton Driver	and MI
Parameters	Source	(PD2)	SCRF Linac	upgrade?
Linac (Pulse Freq)	5 Hz	15 Hz	10 Hz	10 Hz
Kinetic energy (MeV)	400	600	8000	8000
Peak current (mA)	40	50	28	28
Pulse length (μs)	25	90	1000	1000
Booster (cycles at 15 Hz)				
Extraction kinetic energy (Gev)	8	8	-	-
Protons per cycle	5 x 10 ¹²	2.5 x 10 ¹³	-	1
Protons per hour	9 x 10 ¹⁶ (5 Hz)	1.4 x 10 ¹⁸	-	-
8 GeV Beam Power (MW)	0.033 (5 Hz)	0.5	2	2
Main Injector				
Extraction Energy for NuMI (Ge	120	120	120	120
Protons per cycle	3×10^{13}	1.5 x 10 ¹⁴	1.5×10^{14}	1.5 x 1014
fill time (sec)	0.4 (5/15+0.1)	0.4 (5/15+0.1)	0.1	0.1
ramp time (sec)	1.47	1.13	1.4	0.7
cycle time (sec)	1.87	1.53	1.5	0.8
Protons per hour	5.8 x 10 ¹⁶	3.5×10^{17}	3.5×10^{17}	6.6×10^{17}
Ave Beam Power (MW)	0.3	1.9	1.9	3.6

• My conclusions: The SCRF Linac PD is more likely to deliver the desired performance, is more "flexible" machine than the synchrotron based PD, and has more "growth" potential

FLRPC: PD Recommendations

- We recommend that Fermilab prepare a case sufficient to achieve a statement of mission need (CD-0) for a 2 MW proton source (Proton Driver). We envision this project to be a coordinated combination of upgrades to existing machines and new construction.
- We recommend that Fermilab elaborate the physics case for a Proton Driver and develop the design for a superconducting linear accelerator to replace the existing Linac-Booster system. Fermilab should prepare project management documentation including cost & schedule estimates and a plan for the required R&D. Cost & schedule estimates for Proton Driver based on a new booster synchrotron and new linac should be produced for comparison. A Technical Design Report should be prepared for the chosen technology.

FLRP:Proton Driver

CONCLUSIONS

- Understanding the physics of neutrino oscillations, the mass hierarchy, and perhaps CP violation in the neutrino sector requires a new generation of long baseline neutrino experiments → a new intense proton source (Proton Driver)
- Similar in scope to the Main Injector Project (cost/schedule)
- A 8 GeV Synchrotron or a Superconducting Linac appear to be both technically possible. However the SCRF linac has many attractive features if it can be made affordable
- The FNAL management has requested (charge) that the 8 GeV linac design be developed including cost & schedule information so that a technology choice can be made.
- Documentation in support of establishment of mission need, including both technical design and physics studies, will be produced in the next year.
- It is likely this will lead to a request for CD-0 from the DOE

